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Sets 
A set is a collection of objects called the elements (or members of the set). 

• There are no repeated occurrences of elements. 

• There is no order of the elements 

Notation for sets 
• The elements of a set are enclosed in braces 

o A = {1, 2, 3}, C = {Portsmouth, Brighton, London} 

• If S is a set and x is an element of S, then we write x ∈ S 

o 1 ∈ A, London ∈ C, 2, 3 ∈ A 

o and x ∈/ S, if x is not an element of S 

Describing sets 
1. by listing the elements, used mainly for finite sets 

a. A = {3, 6, 9, 12} 

2. by specifying a property that the elements of the set have in common 

a. B = {x | x is a multiple of 3 and 0 < x < 15} 

b. ‘|’ is read ‘such that’ 

The sets of numbers 
• N is used for the set of natural numbers: 

o N = {0, 1, 2, 3, 4, . . . } 

• Z is used for the set of integers 

o Z = {. . . , −2, −1, 0, 1, 2, . . . } 

• Q is used for the set of rational numbers 

o  

Empty, finite and infinite sets 
• The set with no element is called the empty set (or null set) and is denoted by ∅, ∅ = { } 

• If counting of the elements at a fixed rate (e.g. one per second) of a set X can finish in a finite 

amount of time, then the set is finite. 

o If X is a finite set, we call |X| the cardinality of X 

o |X| = number of elements in X 

• If the counting never stops, then X is an infinite set (no stopping condition when specifying a 

property) 

Subsets 
• If A and B are sets and every element of A is also an element of B, then we say that A is a 

subset of B and write 

o A ⊆ B 

• If A is not a subset of B, we write A ⊆ B 

• If A ⊆ B and there is some element in B that does not occur in A, then A is called a proper 

subset of B, A ⊂ B 



FORMULA FOR THE NUMBER OF SUBSETS OF A SET 
A set containing n distinct objects has 2^n subsets. (Includes null ∅) 

Equality of sets 
Two sets are equal if they have the same elements 

• We denote the fact that two sets A and B are equal by writing 

o A = B 

Operations on sets 

Intersection 

• The intersection of two sets A and B is 

o A ∩ B = {x | x ∈ A and x ∈ B} 

• If A and B are disjoint then A ∩ B = ∅ (they have no elements in common). 

Union 

• The union of two sets A and B is  

o A ∪ B = {x | x ∈ A or x ∈ B} 

o Example. If A = {a, b, c} and B = {c, d}, then A ∪ B = {a, b, c, d}. 

Difference 

• The difference of two sets A and B is 

• A \ B = {x | x ∈ A and x ∈/ B}, (the same as A − B) 

Complement of a set 
If all considered subsets are the subsets of a particular set U (the universe of discourse), then the 

difference U \ A is called the complement of A. 

• The complement of A 

o A’ = {x | x ∈ U and x ∈/ A} 

o Example. If U = {a, b, c, d} and A = {c, d}, then A’ = {a, b} 

Venn diagrams 
 

 



Power Set 
• The collection of all subsets of a set S is called the power set of S, denoted by P(S) 

o Example. If S = {a, b, c} then 

o P(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} 

Partition 
• A collection of nonempty subsets of S is a partition of the set S is if every element in S 

belongs to exactly one member of S 

o Example. If S = {a, b, c, d, e, f } then {{a, e}, {c}, {f , d}, {b}} is a partition of S 

Relations 

Cartesian product 
• If A and B are sets, we call A × B the Cartesian product of A and B 

o A × B = {(a, b) | a ∈ A and b ∈ B} 

o Example. If X = {1, 2, 3} and Y = {a, b}, then 

o X × Y = {(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)} 

Motivation example 

 

• A is the set of all students in this class 

• B is the set of all available units at the SOC department 

Then the relation T can be defined between A and B: 

• If the student x ∈ A is registered on the unit y ∈ B, then x is related to y by the relation T, e.g. 

(Stuart, MATHFUN) ∈ T 

• The order matters, T is a relation from A to B 

• T is a relation from A to B: T ⊆ A × B 

o T = {(Alice, DBPRIN), (Bryan, MATHFUN), (John, GUDE), . . . } 

Relations “from – to” (a formal definition) 
Let A and B be nonempty sets. A (binary) relation T from A to B is a subset of A × B. 

If T ⊆ A×B and (a, b) ∈ T, we say that a is related to b by T, aTb. 

Example 

• Let A = {a, b, c, d, e} and B = {1, 2, 3}. Then 

o R1 = {(a, 1),(b, 1),(c, 2),(c, 3)} 

o R2 = {(a, 3),(a, 1),(c, 2),(c, 1),(b, 2)} 



Describing relations 
More often relations are described “by characteristics of their 

elements”. 

Example 

• Let A = {1, 2} and B = {1, 2, 3} and define a binary relation R from A to B as follows: 

o x ∈ A is related to y ∈ B if and only if x 6 y. 

o Then (1, 3) ∈ R since 1 < 3, but (2, 1) ∈/ R since 2 6< 1 

o The elements of R are: 

▪ R = {(1, 1),(1, 2),(1, 3),(2, 2),(2, 3)} 

Relations “on a set” 
When A = B then a (binary) relation on A is a relation from A to A, 

hence a subset of A × A. 

Example 

• An example of a relation R on the set A = {a, b, c}: 

o R = {(a, b),(a, a),(c, a)} ⊆ A × A. 

Example 2 

• Let R be the relation on A = {1, 2, 3, 4} defined by 

o (x, y) ∈ R if and only if x divides y, for all x, y ∈ A. 

▪ Then R = {(1, 1),(1, 2),(1, 3),(1, 4),(2, 2),(2, 4),(3, 3),(4, 4)}. 

Digraphs 
An informative way to picture a relation on a set is to draw its 

digraph. 

 

• dots (vertices) represents the elements of A = {1, 2, 3, 4}, 



• if the element (x, y) is in the relation, an arrow (a directed edge) is drawn from x to y 

• R = {(1, 1),(1, 2),(1, 3),(1, 4),(2, 2),(2, 4),(3, 3),(4, 4)} 

Basic properties of relations 

Reflexivity 
Let R be a binary relation on a set A. 

• R is reflexive if and only if (x, x) ∈ R for all x ∈ A. 

 

• The relation 

o R = {(1, 1),(1, 2),(1, 3),(1, 4),(2, 2), (2, 4),(3, 3),(4, 4)} 

• on the set A = {1, 2, 3, 4} is reflexive 

o (1, 1),(2, 2),(3, 3),(4, 4) ∈ R 

Symmetry 
Let R be a binary relation on a set A. 

• R is symmetric if and only if for all x, y ∈ A if (x, y) ∈ R then (y, x) ∈ R 

 



• The Relation 

o R = {(1, 1),(1, 4),(4, 1),(3, 3)} 

• on the set A = {1, 2, 3, 4} is symmetric 

o (1, 4) ∈ R and also (4, 1) ∈ R 

Transitivity 
Let R be a binary relation on a set A. 

• R is transitive if and only if for all x, y, z ∈ A if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R 

 

 

• The relation 

o R = {(2, 2),(1, 2),(1, 3),(2, 4),(3, 3),(1, 4)} 

o on the set A = {1, 2, 3, 4} is transitive 

▪ (1, 2) ∈ R and (2, 4) ∈ R and also (1, 4) ∈ R 

Equivalence 
Let R be a binary relation on a set A 

• R is an equivalence relation if and only if R is reflexive, symmetric, and transitive 

Example 

• The relation R on A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} defined by 

o R = {(x, y) | x, y ∈ A and x, y have the same remainder when divided by 3} 

o is an equivalence relation. Yes! Is it reflexive, symmetric, and transitive 

Equivalence class 

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the equivalence 

class of a, [a], is the set of all element x in A such that x is related to a by R 

• [a] = {x | x ∈ A and (x, a) ∈ R} 

o R is a symmetric relation, so we can also write (a, x) ∈ R 

Example 



• Let A = {0, 1, 2, 3} and define a binary relation R on A as follows: R = {(0, 0),(1, 1),(1, 3),(2, 

2),(3, 3),(3, 1))}. R is an equivalence and an example of the equivalence class is: 

o = {x | x ∈ A and (x, 1) ∈ R} = {1, 3} 

Example 2 

The relation R on A = {1, 2, 3, 4, 5, 6, 7} defined by: 

R = {(x, y) | x, y ∈ A and x, y have the same remainder when divided by 3} 

1. [1]= {x | x ∈ A and (x, 1) ∈ R} = {1, 4, 7} 

2. [2] = {x | x ∈ A and (x, 2) ∈ R} = {2, 5} 

3. [3] = {x | x ∈ A and (x, 3) ∈ R} = {3, 6} 

4. [4] = {x | x ∈ A and (x, 4) ∈ R} = {1, 4, 7} 

5. [5] = {x | x ∈ A and (x, 5) ∈ R} = {2, 5} 

6. [6] = {x | x ∈ A and (x, 6) ∈ R} = {3, 6} 

7. [7] = {x | x ∈ A and (x, 7) ∈ R} = {1, 4, 7} 

Example 3 

1. [1] = {x | x ∈ A and (x, 1) ∈ R} = {1, 4, 7} 

2. [2] = {x | x ∈ A and (x, 2) ∈ R} = {2, 5} 

3. [3] = {x | x ∈ A and (x, 3) ∈ R} = {3, 6} 

 

Functions 
Definition 

• Let A and B be nonempty sets. 

o A (total) function f from A to B, f : A → B, is a relation from A to B such that 

▪ for all x ∈ A there is exactly one element in B, f (x), associated with x by a 

relation f. 

 

Example 



 

• each element of A is associated with exactly one element of B 

• Such an association is called a function from A to B 

• If x ∈ A is associated with y ∈ B, then x is not associated with any other element of B. 

Total functions 
• A (total) function f maps a set of inputs (the set A) to the outputs (the set B): 

o x ∈ A maps to y = f (x) ∈ B 

o (or might be undefined for some x ∈ A in case of a partial function) 

Describing Functions 

by drawing a figure: 

 

If f : A → B and f associates the element x ∈ A with the element y ∈ B then we write f (x) = y, “f maps 

x to y”. 

The expression f (x) is read “f of x” or “f at x” or “f applied to x” and is also called the image of x 

by a formula: 

• The function f from N → N that maps every natural number x to its cube x 3 can be described 

by 

o f (x) = x ^3 



 

by all possible associations: 

• The function g from A = {a, b, c} to B = {1, 2, 3}: 

o g(a) = 1, g(b) = 1, and g(c) = 2 

Partial functions 
A partial function from A to B is like a function except that it might not be defined for some elements 

of A. 

 

Example 

 

• A function f : Z → Q defined by f (x) = 1 x is an example of a partial function. 

o It is not defined for x = 0. 

Domain 
Let f : A → B (f is partial or total): 

• The subset D ⊆ A of all elements for which f is defined is called the domain of f . In case of a 

total function D = A. In case of a partial function, D ⊂ A. 

Example 



 

Domain of f is 

D = {a, b, c, d} 

Co-domain and range (image) 
Let f : A → B (f is partial or total): 

• The set B is the co-domain of f . 

• The range (image) of f , denoted by range(f ), is the set of elements in the co-domain B that 

are associated with some element of A: 

o range(f ) = {f (x) | x ∈ A}. 

Example 

 

• Co-domain of f is B 

o Range of f is {2, 3, 4} 



 

Properties of functions 

Injective 

• A function f : A → B is called injective (also one-to-one) if it maps distinct elements of A to 

distinct elements of B 

 

Surjective 

• A function f : A → B is called surjective (also onto) if the range(f ) is the co-domain B. 

o for all y ∈ B there exists x ∈ A such that f (x) = y 



 

Bijective 
A function f : A → B is called bijective (or one-to-one correspondence) if it is both injective and 

surjective. 

 

Composite functions 
A new function can be constructed by combining other simpler functions in some way. 

• Asc(First( 00mat00)) = 109 

o because First( 00mat00) = 0m0 and Asc( 0m0 ) = 109 

▪ Asc ◦ First : S → {0, 1, . . . , 127} 

Defintiton 

• Let f : A → B and g : B → C be functions 

o The composition of g with f is the function denoted by g ◦ f : A → C 

▪ defined by (g ◦ f )(x) = g(f (x)) for all x ∈ A. 

(g ◦ f )(x) = g(f (x)) read as g of f , this means do f first then g. 



 

Inverse function 
• Suppose f : X → Y is a bijective function (injective and surjective). 

• Then there is an inverse function f −1 : Y → X that is defined as follows: 

o f −1 (y) = x if and only if f (x) = y 

 

Operators 
• A function from A × A · · · × A to A is called an operator on A 

• This means, an operator associates with each ordered pair of elements from A × · · · × A one 

element in A. 

Example 

• f (x, y) = x × y 

o where x, y ∈ N, then f is a binary operator on N 

• The function Rest : S → S is an example of a unary operator. 

• The number of copies of A involved in the domain of an operator is called the arity. 

• Operators with arity 1 are called unary; operators with arity 2 are called binary 

Logic 

Propositions 
Definition 



A proposition is a statement (declarative sentence) that is either true or false, but not both. 

Examples 

• The earth is round. YES 

• 2 + 3 = 7. YES 

• Do you speak German? NO 

• 3 − x = 5. NO 

• Take two aspirins. NO 

• The sun will come out tomorrow. YES 

Propositional variables 
In logic, the letters p, q, r, . . . denote propositional variables. 

• Each propositional variable has one of two truth values: true or false. 

Example 

• p: Murray will win the Wimbledon next year. (True ? False) 

• q: Federer is a Swiss tennis player. (True ? False) 

 

Statements (or propositional variables) can be combined with logical connectives to obtain 

compound statements. 

 

Example 

• With the connectives and, or, . . . we can form composite statements using p and q: 

o Murray will the Wimbledon this year and Federer is a Swiss tennis player. 

truth value of logical connectives 
Example 

When p is true and q is false, what is the truth value of p and q? What is the truth value of p or q? 

The truth value of a compound statement depends only on: 

• the truth values of the statements being combined and 

• on the types of connectives being used 

most important connectives: 

 



Negation (not) 
If p is a statement, the negation of p is the statement not p, denoted by ¬p. 

 

• q: It is cold. 

• ¬q: It is not the case that it is cold. 

o More simply: ¬q: It is not cold. 

Conjunction (and) 
If p and q are statements, the conjunction of p and q is the compound statement p and q, denoted 

by p ∧ q. 

 

Examples. 

• p: 2 < 10 (True) q: 15 < 20 (True) 

o p ∧ q: “2 < 10” and “15 < 20” (True) 

• p: Brighton is in France. (False) q: 2 < 3 (True) 

o p ∧ q: “Brighton is in France” and “2 < 3”. (False) 

Disjunction (or) 
If p and q are statements, the (inclusive) disjunction of p and q is the compound statement p or q, 

denoted by p ∨ q. 

 



Examples. 

• p: 2 < 10 (True) q: 15 < 20 (True) 

o p ∨ q: 2 < 10 or 15 < 20 (True) 

• p: Brighton is in France. (False) q: 2 < 3 (True) 

o p ∨ q: “Brighton is in France” or “2 < 3”. (True) 

Conditional proposition (implication) 

 

If p and q are statements, the compound statement “if p then q”, denoted p → q, is called 

implication. p hypothesis, q conclusion 

 

Example. 

• p: It is raining. q: I get wet. 

o p → q: If it is raining, then I get wet. 

Conditional proposition (biconditional) 

 

If p and q are statements, the compound statement “if and only if ” (abbr. iff), denoted p ⇔ q, is 

called the biconditional of p and q. 

 



Example 

• p: 1 < 5 (True) q: 2 < 8 (True) 

o p ↔ q: 1 < 5 ⇔ 2 < 8 (True) 

Truth of Compound Propositions 
Truth tables for more complicated compound statements can be constructed using the truth tables 

we have seen so far. 

Hierarchy of evaluation for the connectives (similar to algebraic expressions): 

1. brackets (highest, do first) 

2. ¬ 

3. ∧ 
4. ∨ 

5. → 

6. ↔ 

Example 

Compute the truth table of the statement p → ¬(p ∨ q) ∧ p (the 

same as p → (¬(p ∨ q) ∧ p)) 

 

 

Tautology 
A statement that is: 

• true for all possible values of its propositional variables is called a tautology 

example 

For any proposition p: p ∨ ¬p is a tautology. 

 

Contradiction 
A statement that is: 

• false for all possible values of its propositional variables is called a contradiction 



Example 

For any proposition p: p ∧ ¬p is a contradiction. 

 

Contingency 
a statement that can be either true or false depending on the truth values of its propositional 

variables is called a contingency 

Example 

• p → ¬(p ∨ q) ∧ p 

Logical Equivalence 
Definition 

Two statements are said to be logically equivalent, ≡, iff they have identical truth values for each 

possible value of their statement variables. (Corresponds to = with numbers) 

 

Example 

p → q ≡ ¬p ∨ q. 

 

Logic of Quantified Statements 

Propositional logic 
Propositional logic applies to simple declarative statements where the basic propositions are either 

true or false. 

examples of the propositions (in propositional logic): 

• “Albert Einstein was a mathematical major.” 

• “Mr Bean is a mathematical major.” 

• But “He is a mathematical major.” is not a proposition, it may be either true or false 

depending on the value of he. 



Predicates 
Definition 

A predicate (or propositional function) is a statement containing one or more variables. If values 

from a given set (domain) are assigned to all the variables, the resulting statement is a proposition. 

In computer science we like variables and statements like 

“p : x is an integer less than 80” 

• The statement p is not a proposition, it is much more like a function with a variable x, hence 

also p(x). 

• True/False value of p depends on the value of variable x, 

o e.g. if x = 103 then p(x) is false, if x = 2 then p(x) is true 

Quantifiers 
1. Universal quantifier: 

a. The symbol ∀ (a upside-down A) is called the universal quantifier; the meaning is for 

all (for each). 

2. Existential quantifier: 

a. The symbol ∃ (a backwards E) is called the existential quantifier; the meaning is 

there exists. 

Universal quantifier ∀ 
Definition 

For a predicate p(x) with domain D the statement: 

• “for every x from domain D, p(x)” 

o may be written ∀x ∈ D p(x). 

Example 1. “All students in this class are happy” can be rewritten: 

• Let D be the set of all students in this class, then 

o ∀ x ∈ D, x is happy. 

Example 2. Let S = {1, 2, 3, 4, 5, 6} and consider the statement 

• ∀ x ∈ S, x^2 > x 

Example 3. ∀ x ∈ R, x^2 > x. 

True statements with ∀ 
• The statement ∀x ∈ D p(x) is true if p(x) is true for every x ∈ D. 

False statements with ∀ 
• The statement ∀x ∈ D p(x) is false if p(x) is false for at least one x ∈ D. 

Existential quantifier ∃ 
Definition 

• For a predicate p(x) with domain D the statement 

o “there exists an x from the domain D such that p(x)” 

▪ may be written ∃x ∈ D, p(x). 



Example 1. 

• “There is a happy student in this class” 

o can be rewritten: 

o Let D be the set of all students in this class, then 

▪ ∃ x ∈ D, x is happy. 

Example 2. 

• Let S = {1, 2, 3, 4, 5, 6} and consider the statement 

o ∃ x ∈ S, x^2 > x. 

True statements with ∃ 
The statement ∃x ∈ D p(x) is true if p(x) is true for at least one x ∈ D. 

False statements with ∃ 
The statement ∃x ∈ D p(x) is false if p(x) is false for all x ∈ D. 

Methods of proof 

What is a proof? 
Example.  

Is it true that for all integers m and n, if m is odd and n is even, then m + n is odd? 

• It is true for m = 7, n = 10 and also for m = 9, n = 2, . . . But is it really true for all integers m 

and n with the given properties? 

• To be absolutely sure, we need to prove it! 

• A mathematical proof is a carefully reasoned argument to convince a sceptical listener that a 

given statement is true 

Theorem 

Prove that for all integers m and n, if m is odd and n is even, then m + n is odd. 

An argument (theorem) is a finite collection of statements p1, p2, . . . , pn called premises (or 

hypotheses) followed by a statement q called the conclusion. 

(p1 ∧ p2 ∧ · · · ∧ pn) =⇒ q 

• Premises: “m, n, integers, m is odd, n is even” 

• Conclusion: “m + n is odd” 

There are several different proof techniques: a direct proof, a proof by contradiction, a proof by 

contrapositive, a proof by mathematical induction, . . . 

The choice of proof technique depends on the problem and experience. 

A direct proof 
Theorems are often of the form: 

p (hypothesis) =⇒ q (conclusion) 

• In a direct proof we start with the hypothesis of a statement (premises) and make one 

deduction after another until we reach the conclusion. 



 

Theorem 

For all integers m and n, if m is odd and n is even, then m + n is odd 

In a direct proof, we assume the hypotheses are true and derive the conclusion! 

 

Proof. 

An integer r is even if and only if there exists an integer k such that r = 2k 

Similarly, an integer r is odd if and only if there exists an integer k such that r = 2k + 1. 

In our theorem:  

• m is odd =⇒ there exists an integer k such that m = 2k + 1  

• n is even =⇒ there exists an integer l such that n = 2l  

The sum is:  

• m + n = (2k + 1) + 2l = 2(k + l) + 1  

hence m + n is odd. 

Proof by Contradiction (an indirect proof) 
 

• There are only two options for the truth value of a conclusion: true or false. 



• If supposing that the premises are true and the conclusion is false we are able to arrive 

at a contradiction (a conclusion that is contradictory to our assumptions or something 

obviously untrue like 1 = 0) =⇒ our conclusion must be true! 

 

Theorem 

For every n ∈ N, if n^2 is even, then n is even. 

N^2 is even, n ∈ N =⇒ n is even 

 

Proof. 

• Since n is odd, there exists k ∈ N such that n = 2k + 1. 

• Now n^2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1. 

• Thus n^2 is odd 

• We found a contradiction =⇒ the conclusion must be true! 

Proof by Contrapositive (an indirect proof) 
• The contrapositive of the condition proposition p → q is the proposition ¬q → ¬p. 

• The conditional proposition p → q and its contrapositive ¬q → ¬p are logically equivalent 

To prove a statement by contrapositive, we prove the contrapositive statement by a direct proof and 

conclude that the original statement is true. 

This means, instead of the original theorem 

p → q 

we prove by a direct proof the contrapositive theorem 



¬q → ¬p. 

 

In this way we prove ¬q → ¬p and because of ¬q → ¬p ≡ p → q necessarily p → q must be true as 

well (the theorem p → q is valid) 

Theorem 

For every n ∈ N, if n 2 is even, then n is even. 

A contrapositive statement: For every n ∈ N, if n is not even, then n 2 is not even. 

Contrapositive: For every n ∈ N, if n is odd, then n 2 is odd. 

Now prove the contrapositive statement using a direct proof. 

 

Proof. 

• Since n is odd, there exists k ∈ N such that n = 2k + 1. 

• Now n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 

• Thus n^2 is odd. 

Hence the contrapositive statement is true and by the logical equivalence also the theorem 

“For every n ∈ N, if n 2 is even, then n is even.” 

is valid. 

Introduction to Mathematical Induction 
• Mathematical induction is one of the most basic methods of proof.  

• It is very useful to establish the truth of a statement about all natural numbers. 

Example. What is the sum of the first n natural numbers? 

Let’s look at this problem for n = 1, 2, and 3 and calculate the sum: 



1 = 1 

1 + 2 = 3 

1 + 2 + 3 = 6 

Is there any formula to calculate this sum? Yes! 

Mathematical Induction is the most suitable tool for proving such statements. 

Principle of Mathematical Induction 

Let P be a predicate that is defined for integers n. Suppose 

Basis step P(a) is true for some integer a; 

Inductive step For all integers k > a, if P(k) is true, then P(k + 1) 

is true. 

Then P(n) is true for all integers n > a 

Introduction to graphs 

Basic terminology 
Definition 

 

A graph G is a pair (V, E) of sets: 

• V is a nonempty set of vertices (nodes), 

• E is a set of edges, each element of E is a set of two distinct elements of V. 

 

– if e ∈ E, then e = {u, v}, u and v are different elements of V called the end vertices of e 

– e joins (connects) vertices u and v 

 

• we can use uv instead of e = {u, v} for the edge e (this means uv and vu is the same edge) 

• the vertices u and v are said to be incident with the edge uv or they are adjacent because 

they are the end vertices of an edge 

Example 

Usually we draw a picture of a graph, rather than presenting it formally as sets of vertices and 

degrees. 



 

Multigraphs 
How about the following two “graphs” (the first one is the graph from the Konigsberg bridge 

problem) 

 

 

They are not graphs according to our definition! Why? They have multiples edges and loops. 

A multigraph/pseudograph is like a graph, but it may contain loops and/or multiple edges. No formal 

definition of multigraphs will be presented, but we can study some of their properties as well. 

Degree of a vertex 
Definition 

The number of edges incident with a vertex v is called the degree of v and is denoted deg v. A vertex 

of degree 0 is said to be isolated. 

Example 



 

deg v4 = 2, deg v6 = 2, deg v7 = 1, deg v5 = 0 (v5 is an isolated vertex) 

deg v1 = 3, deg v2 = 5, deg v3 = 5 

Degree sequence 
Definition 

When d1, d2, . . . , dn are the degrees of the vertices of a graph (or multigraph) G ordered so that d1 

6 d2 6 · · · 6 dn. Then (d1, d2, . . . , dn) is called the degree sequence of G. 

 

The degree sequence: (0, 2, 2, 2, 3, 3) 

Euler Theorem 
Theorem (Euler Theorem or Handshaking lemma) 

 



 

The sum of all vertex-degrees: 

2 + 2 + 2 + 3 + 3 = 12 

 

The number of edges: 6 

2 × 6 = 12 

 

Consequences of Euler Theorem 
The Euler Theorem leads to several more consequences: 

• In any graph, the sum of all the vertex-degrees is an even number. 

Example. Is there a graph with the degree sequence: (1, 2, 3, 3)? No! Why? 

3 + 3 + 2 + 1 is odd number! 

• In any graph, the number of vertices of odd degree is even. 

Example. Is there a graph with the degree sequence: (1, 2, 2, 2)? No! Why? 

E.g. There is only one vertex of odd degree. 

Special types of graphs 

complete graphs 
Definition 

For any positive integer n, the complete graph on n vertices, denoted Kn, is that graph with n 

vertices every two of which are adjacent. 

 



bipartite graphs 
Definition 

A bipartite graph is one whose vertices can be partitioned into (disjoint) sets V1 and V2 in such a way 

that every edge joins a vertex in V1 with a vertex in V2 (no edges within V1 nor within V2). 

 

 

Subgraphs 
Definition 

A graph H is a subgraph of a graph G iff the vertex and edge sets of H are, respectively, subsets of the 

vertex and edge sets of G. 

Example 

 

How the graph is drawn is not important! H1 is a subgraph of G, H2 is not a subgraph of G 

Isomorphic graphs 
It is important to know when two graphs are essentially the same and when they are essentially 

different. How the graph is drawn is not important, the vertices and the edges are important! 

Example 

 



The number of edges in G3 is smaller than the number of edges in G1, but G1 and G2 are “the 

same”, G1 is isomorphic to G2. 

Two graphs G and H are isomorphic if H can be obtained from G be by re-labelling the vertices. 

 

G is isomorphic to H if there is a bijective function (injective and surjective) f : V(G) → V(H) such that 

• if u and v are adjacent in G, then f (u) and f (v) are adjacent in H; 

• if u and v are not adjacent in G, then f (u) and f (v) are not adjacent in H; 

Draw all possible graphs on the vertex set v1, v2, v3 (labelled graphs): 

 

Draw all non-isomorphic graphs on the vertex set v1, v2, v3 (unlabelled graphs): 



 

• Generally, it is difficult to prove that two graphs are isomorphic: we have to try all the 

bijections between vertex sets and check. 

• It can be shown, that if G and H are isomorphic graphs, then G and H: 

• 1 have the same number of vertices, 

• 2 have the same number of edges, 

• 3 have the same degree sequence, 

• 4 either both are connected or both are not connected 

 

So sometimes it is easier to show that graphs are not isomorphic, e.g. it is enough when one of 

the properties above is broken. 

Key Terms 
• graph, vertex, edge 

• multigraph, multiple edges, loops 

• incident, adjacent 

• degree, degree sequence, isolated vertex 

• complete graph 

• bipartite graph, complete bipartite graph 

• isomorphic graphs, isomorphism of graphs 

• Euler Theorem (Handshaking lemma) 

Walks, trails, paths 

Walks 
• many real problems, when translated to graph theory enquire about the possibility of 

walking through a graph 

• most of the definitions and results about walks are also valid for multigraphs (even when we 

don’t mention it) 

Definition 

A walk in a multigraph is an alternating sequence of vertices and edges (beginning and ending with a 

vertex), each edge is incident with the vertex immediately preceding and following it. The length of a 

walk is the number of edges in it. 



 

A walk of length 9: 

d−da−a−ab−b−be− 

e−ed−d−db−b−bc− 

c −ce −e −ed −d −df 

our notation: 

(d, a, b, e, d, b, c, e, d, f ) 

a walk can go through the same vertex/use the same edge several times 

A walk is closed if the first vertex is the same as the last, e.g. the walk (d, a, b, e, d, b, c, e, d), and is 

otherwise set to be an open. 

Trails and paths 
Definition 

• A trail is a walk in which all edges are distinct; 

• a path is a walk in which all vertices are distinct. 

Example (trail). 



 

Example (path). 

 

Circuits and cycles 
Definition 

• A closed walk in which all edges are different is called a circuit (a closed trail). 

• A closed walk in which all vertices (except the first and the last vertex) are different is called 

a cycle (a closed path). 

 



Overview – various types of walks 

 

Connected Graphs 
Definition 

A graph G is connected if there is a path in G between any pair of vertices and disconnected 

otherwise. 

Example. 

 

Definition 

An edge in a connected graph is a bridge if deleting it would create a disconnected graph. 

Examples 



 

Which of the following graphs has a bridge? 

 

Eulerian graphs 
A graph is Eulerian iff it has a circuit that contains every edge – a closed walk using each edge exactly 

once (called an Eulerian circuit) 

Example 



 

Characterisation of Eulerian graphs 
Theorem 

A multigraph is Eulerian if and only if it is connected and every vertex has even degree. 

 

Fleury’s Algorithm 
Suppose there is an Eulerian graph on the input. 

Step 0: Choose any vertex to start. 

Step 1: From that vertex choose an edge to traverse, choosing a bridge only if there is no alternative. 

Step 2: After traversing that edge, erase it (and vertices of degree 0), coming to the next vertex. 

Step 3: Repeat steps 1-2 until all edges have been traversed, and you should be back at the starting 

vertex 

Example 

Travelling Salesman and Hamiltonian graphs 
A graph is Hamiltonian iff it has a cycle that contains every vertex – a closed path using each vertex 

exactly once (called a Hamiltonian cycle). 

Example 

 



How can we construct a Hamiltonian cycle? 

• There are known algorithms for finding a Hamiltonian cycle but at present none are known 

that would guarantee to find it in a “reasonable amount” time. 

• The known algorithms use an exhaustive search of all possibilities – require exponential or 

factorial time in worst case 

• Bad news. The problem of finding a Hamiltonian cycle is difficult, hence also the travelling 

salesman problem 

Adjacency matrix 
There are several possibilities of how the information about a graph can be coded when working in a 

program, e.g. using sets. 

Commonly is also used the adjacency matrix. 

Definition 

Let G be a graph with n vertices labeled v1, v2, . . . , vn. The adjacency matrix of G is the n × n matrix 

A = (aij) whose (i, j) entry is aij , where for each i and j with 1 6 i, j, 6 n, define 

 

Example 

 

Let G be a graph with vertices v1, v2, . . . , vn and let A = (aij) be the adjacency matrix of G. 



 

• The diagonal entries of A are all 0; that is, aii = 0 for i = 1, . . . , n. 

• The adjacency matrix is symmetric, that is aij = aji for all i, j. 

• deg vi is the number of 1’s in row i; this is also the number of 1’s in column i (row i and 

column i are the same) 

revise how to multiply matrices 

Trees 

introduction to trees 
For us trees form a (very nice!) subclass of graphs which is used extensively in computer science, 

chemistry, linguistics 

Definition: 

A tree is a connected graph that contains no cycles. 

 

Alternative definitions 

Let G be a graph. Then the following statements are equivalent. 

Definition (Alternative definitions of tree) 

• G is a tree. 

• G is connected and acyclic, that is, without cycles. 

• Between any two vertices of G there is precisely one path. 

How to recognise a tree 
Question. You are given a graph G. How can you decide whether G is a tree or not? 

Theorem 



A connected graph with n vertices is a tree if and only if it has n − 1 edges. 

Two important pieces of information follow from this theorem: 

• If a connected graph with n vertices has n − 1 edges, it must be a tree! 

• If a connected graph with n vertices is a tree, the graph has exactly n − 1 edges. 

spanning trees 
Definition 

A spanning tree of a connected graph G is a subgraph that is a tree and that includes every vertex of 

G 

Example. A graph and several of its spanning trees 

 

Spanning trees are considered to be different if they make use of different edges of the graph. 

How to find a spanning tree? 
Finding a spanning tree in a connected graph G is not hard (a connected graph on n vertices is a tree 

iff it has n − 1 edges) 

• If G has no cycles, then it is already a tree, so G itself is a spanning tree for G. 

 

Delete an edge from a cycle (without deleting any vertices), e.g. AD 

By repeating the above procedure, we eventually find a connected subgraph without cycles 

containing all vertices of G, that is, a spanning tree of G. 

Example 



 

Depth-First Search 
• how do we test for a cycle in a graph in the program? 

• Is it really a good idea to always seek an edge which is in a cycle? 

It is better to use an algorithm based on a depth-first search method. 

• ‘’Depth-first search’ can be useful for other important algorithms, e.g. to test whether a 

graph is connected, produce a spanning tree in the connected case. 

• The method is based on the exploring of vertices in some way 

Depth-First Search (idea) 

 



Step 1: Start at any vertex (label it), Step 2: choose any adjacent unlabelled vertex to it (label it and 

move to it), . . . go to Step 2 

Step 3: when there is no unlabeled adjacent vertex to it, – find the last labelled vertex with an 

unlabelled adjacent vertex (backtrack) and . . . go to Step 2 – or finish when back at the first labelled 

vertex 

Depth-First Search and Spanning Tree 
• The depth-first search method can be used for finding a spanning tree. 

• When a new vertex is labelled, we always add the “’exploring” edge. 

 

Algorithm for Spanning Tree (DFS) 

 

The minimum spanning tree 
Definition 



A minimum spanning tree of a weighted graph is a spanning tree of least weight (that is, a spanning 

tree for which the sum of the weights of all its edges is least among all spanning trees). 

 

How to find the minimum spanning tree (Kruskal) 

 



Kruskal’s algorithm formally 

 

How to find the minimum spanning tree (Prim) 
It builds a minimum spanning tree T be expanding outward in connected links from some vertex. 

 



Prim’s algorithm formally 

 

Root of the tree (data structure) 
A tree is rooted if it comes with a specified vertex, called the root. 

 

Terminology with rooted tree 

• Each vertex in a tree has zero or more children – the vertices “below” it in the tree (our trees 

are drawn growing downwards). 

• A vertex that has a child is called the child’s parent vertex. 

• If two vertices have the same parent they are called siblings. 

 



 

Network Models and Digraphs 

Directed graphs (digraphs) 
Graphs are used to model real-life situations; when edges represent roads or pipes then they need 

to be associated with direction/weights. 

Definition 

A digraph is a pair (V, E) of sets, V is a nonempty set of vertices, E is a set of ordered pairs of distinct 

elements of V, called arcs (edges). 

• A digraph can be pictured like a graph with the orientation of an arc indicated by an arrow. 

• A digraph is just a graph in which each edge has an orientation or direction assigned to it. 

 

Indegree and outdegree 

• Similarly to graphs, digraphs for us do not contain multiple arcs/loops. 

• Each vertex of a digraph has:  

o – an indegree: the number of arcs directed into that vertex, and  

o – an outdegree: the number of arcs directed out of that vertex 



 

Terminology and adjacency matrix 

• Similar definitions to those for graphs exist for walks, paths . . . . However it is necessary to 

follow the direction of the arcs. 

• The adjacency matrix A of G with vertices v1, v2, . . . , vn is defined by setting aij = 1 if there 

is an arc from vi to vj (0 otherwise) – A generally is not symmetric. 

 

Properties of adjacency matrix 
Most assertions made about the adjacency matrix for graphs apply with appropriate changes for 

digraphs as well. 

• The outdegree of the vertex vi is the number of 1’s in row i; the indegree of the vertex vi is 

the number of 1’s in column i. 

• The (i, j) entry of A k is the number of different walks of length k from vi to vj respecting the 

orientation of arcs, k > 1. 

 



Introduction to network models 
Directed graphs are useful for modelling networks problem. 

 

• The network might be: 

o – a transportation network through which commodities flow, 

o – a pipeline network through which oil/gas/. . . flows, 

o – a computer network through which data flows, 

In each case the problem is to find a maximum flow. 

Maximising the flow in a network is a problem that belongs both to graph theory and to operations 

research. 

An example of a network model 
The arcs of a digraph (a network) can represent an oil pipeline network and show the direction the 

oil can flow 

 

Oil is unloaded at the dock S (the source) and pumped through the network to the refinery T (the 

sink). 

• The weight on the arcs shows the capacities of the pipelines. 

Our goal is to pump as much oil as possible from S to T. To formalise such a concept, we use the 

term a flow. 



What is a flow? 
A flow in a network is a description of the amount of commodity that can flow along the network (in 

unit time). 

• No pipe must receive more than it can cope with (“flow 6 capacity” for each arc). 

• No commodity must be lost along the way ( “flow in = flow out” for all vertices except S, T). 

A flow assigns to each arc e a nonnegative number, f (e), subject to the previous two constraints. 

 

An example of a flow 

 

• This assignment has the properties: 

o – for each arc “flow(e) 6 capacity(e)”, 

o – for each vertex A, B, C, D (all internal vertices) “the flow into each one is equal to 

the flow out of it”. 

Hence, it is a flow. 

What is a the value of the flow? 

 

The value of a flow must be the same as the sum of flows for all incoming arcs to T. So, the value of 

this flow is 2. 



Formal definition of a network 
Let G = (V, E) be a directed weighted graph with the following properties: 

 

• the (nonnegative) weight on each arc is the capacity of the edge e, denoted c(e), c(e) > 0 – 

the maximum amount of some commodity that can flow through it in unit of time (liters of 

oil, kW of electricity, # of people, # of messages, . . . ) 

Formal definition of a flow 

 

Feasibility condition: 0 6 f (e) 6 c(e) for each edge e ∈ E, in words: the flow along each arc must be 

less than or equal to the capacity of that arc. 

 

in words: for each internal vertex u (i.e. not S or T) the sum of flows along the arcs into u is equal to 

the sum of the flows along the arcs out of u 

The value of the flow formally 

 

But by the flow conservation law, none of the flow is lost at any vertex. 



 

A maximum flow is a flow of maximum value. 

The construction of flows 
There is a simple way of finding a maximum flow: 

• Locate a path P from S to T (which follows the direction specified by the arrows on arcs) and 

define a flow by setting: 

 

 

• • Continue to increment by 1 the flow on the arcs of SACT until you reach the smallest 

capacity on the arcs of SACT. 

 

Can we find another path from S to T with an unsaturated edge? 

• Yes, e.g. SBDT. And again a flow can be incremented by 1, until an arc on SBDT is saturated. 



 

Can we find another path from S to T with an unsaturated edge? 

• Yes, e.g. SBCT. And again a flow can be incremented by 1, until an arc on SBCT is saturated. 

 

At this stage, every path between S and T contains a saturated arc! 

However, this is not the end of the story, the flow can still be increased . . . up to 17 :-) But how? 
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